Micrometerメトリクス
micrometerは、メトリクス収集のための抽象化レイヤーを提供します。
カウンタ、ゲージ、タイマ、ディストリビューション・サマリなどの基本的なメータ・タイプの API と、さまざまなバックエンド監視システムのメトリクスの収集と伝達を一般化する MeterRegistry
API を定義します。
Micrometerは、Quarkusのメトリクスとして推奨されるアプローチです。 |
デフォルトでは、メトリクスはメインの HTTP サーバで公開されます。 別の管理ポートからメトリッ クを表示したい場合は、 管理インターフェイス のセクションを参照してください。 |
マイクロメーターとモニタリングシステムのエクステンション
Quarkus Micrometerエクステンションは、Micrometerプロジェクトと同じ構造になっています。
quarkus-micrometer
エクステンションは、Micrometerのコアサポートとランタイムの統合を提供します。
他のQuarkusやQuarkiverseのエクステンションは、Quarkus Micrometerエクステンションを使用して、他のモニタリングシステムのサポートを提供します。
Quarkus エクステンション:
-
micrometer
-
micrometer-registry-prometheus
Quarkiverse extensions (may be incomplete):
-
micrometer-registry-azure-monitor
-
micrometer-registry-datadog
-
micrometer-registry-graphite
-
micrometer-registry-influx
-
micrometer-registry-jmx
-
micrometer-registry-newrelic-telemetry
-
micrometer-registry-otlp
-
micrometer-registry-signalfx
-
micrometer-registry-stackdriver
-
micrometer-registry-statsd
例えば、アプリケーションに Prometheus メトリクスのサポートを追加するには、 micrometer-registry-prometheus
エクステンションを使用します。
これにより、Quarkus MicrometerエクステンションとMicrometerコアライブラリが依存ライブラリとして追加されます。
(プロジェクトディレクトリで)以下のコマンドを使用して、エクステンションをプロジェクトに追加します:
quarkus extension add micrometer-registry-prometheus
./mvnw quarkus:add-extension -Dextensions='micrometer-registry-prometheus'
./gradlew addExtension --extensions='micrometer-registry-prometheus'
これにより、 pom.xml
に以下が追加されます:
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-micrometer-registry-prometheus</artifactId>
</dependency>
implementation("io.quarkus:quarkus-micrometer-registry-prometheus")
And you’re all set!
A similar process applies for other meter registry extensions.
To use the Micrometer StackDriver MeterRegistry, for example, you would use the
quarkus-micrometer-registry-stackdriver
extension from the Quarkiverse:
quarkus extension add io.quarkiverse.micrometer.registry:quarkus-micrometer-registry-stackdriver
./mvnw quarkus:add-extension -Dextensions='io.quarkiverse.micrometer.registry:quarkus-micrometer-registry-stackdriver'
./gradlew addExtension --extensions='io.quarkiverse.micrometer.registry:quarkus-micrometer-registry-stackdriver'
<dependency>
<groupId>io.quarkiverse.micrometer.registry</groupId>
<artifactId>quarkus-micrometer-registry-stackdriver</artifactId>
</dependency>
implementation("io.quarkiverse.micrometer.registry:quarkus-micrometer-registry-stackdriver")
その他のレジストリ実装
使用する Micrometer レジストリに関連エクステンションがない場合は、
quarkus-micrometer
エクステンションを使用し、Micrometer メーターレジストリの依存関係を直接取り込んでください:
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-micrometer</artifactId>
</dependency>
<dependency>
<groupId>com.acme</groupId>
<artifactId>custom-micrometer-registry</artifactId>
<version>...</version>
</dependency>
implementation("io.quarkus:quarkus-micrometer")
implementation("com.acme:custom-micrometer-registry")
次に、次のセクションで説明するように、MeterRegistry を設定して初期化するために、独自のプロバイダを指定する必要があります。
カスタマイズされたMeterRegistryの作成
Use a custom @Produces
method to create and configure a your own MeterRegistry
if you need to.
以下の例では、StatsDで使用される行フォーマットをカスタマイズしています。
@Produces
@Singleton (1)
public StatsdMeterRegistry createStatsdMeterRegistry(StatsdConfig statsdConfig, Clock clock) { (2)
// define what to do with lines
Consumer<String> lineLogger = line -> logger.info(line);
// inject a configuration object, and then customize the line builder
return StatsdMeterRegistry.builder(statsdConfig)
.clock(clock)
.lineSink(lineLogger)
.build();
}
1 | The method returns a @Singleton . |
2 | The method returns the specific type of MeterRegistry |
This example corresponds to the following instructions in the Micrometer documentation: Micrometer StatsD: Customizing the Metrics Sink
Use MicroProfile Config to inject any configuration attributes you need to configure the registry.
Most Micrometer registry extensions, like quarkus-micrometer-registry-statsd
, provide registry-specific configuration objects that are integrated with the Quarkus configuration model.
The Quarkiverse GitHub Repository can be a useful implementation reference.
独自のメトリクスの作成
Metrics data is used in the aggregate to observe how data changes over time. This data is used for trend analysis, anomaly detection, and alerting. Data is stored by backend monitoring systems in time series databases, with new values appended to the end of the series.
Metrics are constructed lazily. You may not see any data for the metric you’re looking for until you’ve performed an action that will create it, like visiting an endpoint. |
命名規則
Meter names should use dots to separate segments, a.name.like.this
.
Micrometer applies naming conventions to convert registered meter names to match the expectations of backend monitoring systems.
Given the following declaration of a timer: registry.timer("http.server.requests")
, applied naming conventions will emit the following metrics for different monitoring systems:
-
Prometheus:
http_server_requests_duration_seconds
-
Atlas:
httpServerRequests
-
Graphite:
http.server.requests
-
InfluxDB:
http_server_requests
Define dimensions for aggregation
Metrics, single numerical measurements, often have additional data captured with them. This ancillary data is used to group or aggregate metrics for analysis. The Micrometer API refers to this dimensional data as tags, but you may see it referred to as "labels" or "attributes" in other documentation sources.
Micrometer is built primariliy for backend monitoring systems that support dimensional data (metric names that are enchriched with key/value pairs). For heirarchical systems that only support a flat metric name, Micrometer will flatten the set of key/value pairs (sorted by key) and add them to the name.
Tags can be specified when a meter is registered with a MeterRegistry
or using a Meter Filter.
See the Micrometer documentation for additional advice on tag naming.
Each unique combination of metric name and dimension produces a unique time series. Using an unbounded set of dimensional data can lead to a "cardinality explosion", an exponential increase in the creation of new time series. |
Obtain a reference to a MeterRegistry
To register meters, you need a reference to a MeterRegistry
, which is configured and maintained by the Micrometer extension.
Use one of the following methods to obtain a reference to a MeterRegistry
:
-
CDIコンストラクタ注入の使用:
package org.acme.micrometer; import io.micrometer.core.instrument.MeterRegistry; import jakarta.ws.rs.GET; import jakarta.ws.rs.Path; import jakarta.ws.rs.Produces; @Path("/example") @Produces("text/plain") public class ExampleResource { private final MeterRegistry registry; ExampleResource(MeterRegistry registry) { this.registry = registry; } }
-
Use a
MeterRegistry
member variable and use@Inject
:@Inject MeterRegistry registry;
-
Use the global
MeterRegistry
:MeterRegistry registry = Metrics.globalRegistry;
ゲージ
Gauges measure a value that can increase or decrease over time, like the speedometer on a car. Gauges can be useful when monitoring the statistics for a cache or collection.
Gauge values are sampled rather than set; there is no record of how the value associated with a gauge may have changed between measurements.
Micrometer provides a few mechanisms for creating gauges:
-
Wrap construction of a collection to monitor its size:
List<String> list = registry.gaugeCollectionSize("fantastic.list", (1) Tags.of("key", "value") // optional (2) new ArrayList<>()); (3)
1 Create a new gauge, list.size
, using the dot-separated convention.2 Associate tags with the gauge. Gauge tag values are constant, and must be assigned at construction time. 3 Construct the array list whose size should be observed. -
Use a builder to create a Gauge that will call a function:
Gauge.builder("jvm.threads.peak", threadBean, ThreadMXBean::getPeakThreadCount) (1) .baseUnit(BaseUnits.THREADS) // optional (2) .description("The peak live thread count...") // optional (3) .tags("key", "value") // optional (4) .register(registry); (5)
1 Create a new gauge called jvm.threads.peak
that will callgetPeakThreadCount
onthreadBean
, an instance ofThreadMXBean
2 Define the base unit, see BaseUnits.java for predefined values. 3 Provide a description of the Gauge 4 Associate tags with the gauge 5 Register the Gauge with the MeterRegistry
See Gauges in the Micrometer documentation for more information and examples.
Of note are two special cases: TimeGauge
for measuring time, and a MultiGauge
for reporting several criteria together.
Micrometer does not create strong references to the objects it observes by default.
Depending on the registry, Micrometer either omits gauges that observe
objects that have been garbage-collected entirely or uses NaN (not a number) as the observed value.
|
When should you use a gauge? Only use a gauge when you can’t use something else. Gauges can be less straight-forward to use than other meters. If what you are measuring can be counted (because the value always increments), use a counter instead.
カウンター
Counters measure values that only increase. Use one of the methods below to create a counter.
-
Use a convenience method on the
MeterRegistry
:registry.counter("example.prime.number", "type", "prime"); (1) (2)
1 example.prime.number
is the counter name.2 type
is a dimensional tag with valueprime
. -
Use
Counter.builder
to provide a description and units:Counter.builder("count.me") (1) .baseUnit("beans") // optional (2) .description("a description") // optional (3) .tags("region", "test") // optional (4) .register(registry);
1 Create a new counter called count.me
2 Define a custom base unit. See BaseUnits.java for predefined values. 3 Provide a description for the counter 4 Associate tags with the counter -
Annotate a method
@Counted(value = "counted.method", extraTags = { "extra", "annotated" }) (1) (2) void countThisMethod(){ ... }
1 A CDI interceptor will create and register a counter called counted.method
2 The interceptor-created counter will have the "extra" dimension tag with value "annotated"
See Counters in the Micrometer documentation for more information and examples, including the less common FunctionCounter
that can be used to measure the result returned by an always increasing function.
When should you use a counter? Use a counter if you are doing something that can not be either timed or summarized. If you want to understand more about how a value is changing, a timer (when the base unit of measurement is time) or a distribution summary might be more appropriate.
サマリーとタイマー
Timers and distribution summaries in Micrometer are very similar. Both meters record data, and can capture additional histogram or percentile data. While distribution summaries can be use for arbitrary types of data, timers are optimized for measuring time and durations.
Timers and distribution summaries store at least three values internally:
-
the aggregation of all recorded values as a sum
-
the number of values that have been recorded (a counter)
-
the highest value seen within a decaying time window (a gauge).
Create a distribution summary
Use a distribution summary to record a value, not time. Use one of the following methods to create a distribution summary.
-
Use a convenience method on the
MeterRegistry
:registry.summary("bytes.written", "protocol", "http"); (1) (2)
1 bytes.written
is the summary name2 protocol
is a dimensional tag with valuehttp
. -
Use
DistributionSummary.builder
to provide a description and units:DistributionSummary.builder("response.size") (1) .baseUnit("bytes") // optional (2) .description("a description") // optional (3) .tags("protocol", "http") // optional (4) .register(registry);
1 Create a new distribution summary called response.size
2 Use bytes
as a base unit. See BaseUnits.java for predefined values.3 Provide a description for the distribution summary 4 Associate tags with the distribution summary
タイマーの作成
Timers measure short-duration latencies and how often they occur. Negative values are not supported, and longer durations could cause an overflow of the total time (Long.MAX_VALUE nanoseconds (292.3 years)).
Use one of the following methods to construct a timer.
-
Use a convenience method on the
MeterRegistry
:registry.timer("fabric.selection", "primary", "blue"); (1) (2)
1 fabric.selection
is the summary name2 primary
is a dimensional tag with valueblue
. -
Use
Timer.builder
to provide a description and units:Timer.builder("my.timer") (1) (2) .description("description ") // optional (3) .tags("region", "test") // optional (4) .register(registry);
1 Create a new timer called my.timer
2 Timers measure time, and will convert it into the units required by the monitoring backend 3 Provide a description for the distribution summary 4 Associate tags with the timer -
Annotate a method
@Timed(value = "call", extraTags = {"region", "test"}) (1) (2)
1 A CDI interceptor will create and register a timer called call
2 The interceptor-created timer will have the "region" dimension tag with value "test"
Measure durations with Timers
Micrometer provides the following convenience mechanisms for recording durations.
-
Wrap the invocation of a
Runnable
:timer.record(() -> noReturnValue());
-
Wrap the invocation of a
Callable
:timer.recordCallable(() -> returnValue());
-
Create a wrapped
Runnable
for repeated invocation:Runnable r = timer.wrap(() -> noReturnValue());
-
Create a wrapped
Callable
for repeated invocation:Callable c = timer.wrap(() -> returnValue());
-
Use a
Sample
for more complex code paths:Sample sample = Timer.start(registry); (1) doStuff; (2) sample.stop(registry.timer("my.timer", "response", response.status())); (3)
1 We create a sample, which records the start of the timer. 2 The sample can be passed along as context 3 We can choose the timer when the sample is stopped. This example uses a response status as a tag identifying the timer, which won’t be known until processing is complete.
Histograms and percentiles
Both timers and distribution summaries can be configured to emit additional statistics, like histogram data, precomputed percentiles, or service level objective (SLO) boundaries. See Timers and Distribution Summaries in the Micrometer documentation for more information and examples, including memory footprint estimation for both types.
The count, sum, and histogram data associated with timers and distribution summaries can be re-aggregated across dimensions (or across a series of instances). Precomputed percentile values can not. Percentiles are unique to each dataset (the 90th percentile of this collection of measurements). |
Automatically generated metrics
Micrometerエクステンションは、HTTPサーバーのリクエストの時間を自動的に計測します。Prometheus のタイマーの命名規則に従い、 http_server_requests_seconds_count
、 http_server_requests_seconds_sum
、 http_server_requests_seconds_max
を参照してください。要求された URI、HTTP メソッド (GET、POST など)、ステータスコード (200、302、404 など)、そしてより一般的な結果フィールドのための次元ラベルが追加されました。
quarkus.micrometer.binder.http-server.ignore-patterns
プロパティを使用して、HTTP エンドポイントの測定を無効にすることができます。このプロパティには、無視すべきURIパスを特定する単純な正規表現のマッチパターンをコンマで区切ったリストを指定できます。例えば、 quarkus.micrometer.binder.http-server.ignore-patterns=/example/prime/[0-9]+
を設定すると、以下へのリクエストが無視されます。http://localhost:8080/example/prime/7919
へのリクエストは無視されます。http://localhost:8080/example/gauge/7919
へのリクエストは、依然として計測されます。
micrometerエクステンションでは、パスパラメータを含むURIをテンプレート化して表現することに最善の努力を払います。上の例を使うと、次のようなリクエストは http://localhost:8080/example/prime/7919
へのリクエストは、 http_server_requests_seconds_*
メトリクスの属性として、 uri=/example/prime/{number}
という値で表示されます。
正しいURLが特定できない場合は、 quarkus.micrometer.binder.http-server.match-patterns
プロパティを使用します。このプロパティには、単純な正規表現パターンと置換文字列の関連性を定義するコンマ区切りのリストを指定できます。例えば、 quarkus.micrometer.binder.http-server.match-patterns=/example/prime/[0-9]+=/example/{jellybeans}
を設定すると、要求された uri が /example/prime/[0-9]+
に一致した場合、uri 属性に /example/{jellybeans}
の値が使用されます。
デフォルトでは、メトリクスはPrometheusのフォーマット application/openmetrics-text
を使用してエクスポートされます。 Accept
リクエストヘッダを plain/text
( curl -H "Accept: plain/text" localhost:8080/q/metrics/
) に指定することで、以前のフォーマットに戻すことも可能です。
Customizing Micrometer
Quarkus provides a variety of way to customize Micrometer.
Use MeterFilter
to customize emitted tags and metrics
Micrometerは MeterFilter
インスタンスを使って、 MeterRegistry
インスタンスが出力するメトリクスをカスタマイズします。 Micrometer エクステンションは、 MeterFilter
のCDI Beanを検出して、 MeterRegistry
インスタンスを初期化するときにそれを使います。
@Singleton
public class CustomConfiguration {
@ConfigProperty(name = "deployment.env")
String deploymentEnv;
/** Define common tags that apply only to a Prometheus Registry */
@Produces
@Singleton
@MeterFilterConstraint(applyTo = PrometheusMeterRegistry.class)
public MeterFilter configurePrometheusRegistries() {
return MeterFilter.commonTags(Arrays.asList(
Tag.of("registry", "prometheus")));
}
/** Define common tags that apply globally */
@Produces
@Singleton
public MeterFilter configureAllRegistries() {
return MeterFilter.commonTags(Arrays.asList(
Tag.of("env", deploymentEnv)));
}
/** Enable histogram buckets for a specific timer */
@Produces
@Singleton
public MeterFilter enableHistogram() {
return new MeterFilter() {
@Override
public DistributionStatisticConfig configure(Meter.Id id, DistributionStatisticConfig config) {
if(id.getName().startsWith("myservice")) {
return DistributionStatisticConfig.builder()
.percentiles(0.5, 0.95) // median and 95th percentile, not aggregable
.percentilesHistogram(true) // histogram buckets (e.g. prometheus histogram_quantile)
.build()
.merge(config);
}
return config;
}
};
}
}
この例では、シングルトン CDI Beanは、2 つの異なる MeterFilter
Beanを生成します。1 つは Prometheus MeterRegistry
インスタンスのみに適用され ( @MeterFilterConstraint
修飾子を使用)、もう 1 つはすべての MeterRegistry
インスタンスに適用されます。アプリケーション設定プロパティーも注入され、タグ値として使用されます。MeterFiltersのその他の例は、次のリンクにあります:公式ドキュメント 。
Use HttpServerMetricsTagsContributor
for server HTTP requests
By providing CDI beans that implement io.quarkus.micrometer.runtime.HttpServerMetricsTagsContributor
, user code can contribute arbitrary tags based on the details of HTTP request
Use MeterRegistryCustomizer
for arbitrary customizations to meter registries
By providing CDI beans that implement io.quarkus.micrometer.runtime.MeterRegistryCustomizer
user code has the change to change the configuration of any MeterRegistry
that has been activated.
Unless an implementation is annotated with @io.quarkus.micrometer.runtime.MeterRegistryCustomizerConstraint
, the customization applies to all MeterRegistry
instances.
Micrometerはアノテーションをサポートしていますか?
Micrometerでは、メソッドに追加できる2つのアノテーション、 @Counted
と @Timed
が定義されています。 @Timed
アノテーションは、メソッドの実行をラップし、アノテーション自体に定義されているタグに加えて、次のタグを出力します:class、method、exception("none "または検出された例外のシンプルなクラス名)。
Parameters to @Counted
and @Timed
can be annotated with @MeterTag
to dynamically assign meaningful tag values.
MeterTag.resolver
can be used to extract a tag from a method parameter, by creating a bean
implementing io.micrometer.common.annotation.ValueResolver
and referring to this class: @MeterTag(resolver=CustomResolver.class)
MeterTag.expression
is also supported, but you have to implement the evaluation of the expression
by creating a bean implementing io.micrometer.common.annotation.ValueExpressionResolver
that can evaluate expressions.
enum Currency { USD, EUR }
@Singleton
class EnumOrdinalResolver implements ValueResolver {
@Override
public String resolve(Object parameter) {
if(parameter instanceof Enum) {
return String.valueOf(((Enum<?>) parameter).ordinal());
}
return null;
}
}
@Singleton
public class MyExpressionResolver implements ValueExpressionResolver {
@Override
public String resolve(String expression, Object parameter) {
return someParser.parse(expression).evaluate(parameter);
}
}
// tags = type=with_enum, currency=${currency.toString()}
@Timed(value="time_something", extraTags = {"type", "with_enum"})
public Something calculateSomething(@MeterTag Currency currency) { ... }
// tags = type=with_enum, the_currency=${currency.toString()}
@Timed(value="time_something", extraTags = {"type", "with_enum"})
public Something calculateSomething(@MeterTag(key="the_currency") Currency currency) { ... }
// tags = type=with_enum, currency=${currency.ordinal()}
@Timed(value="time_something", extraTags = {"type", "with_enum"})
public Something calculateSomething(@MeterTag(resolver=EnumOrdinalResolver.class) Currency currency) { ... }
// tags = type=with_enum, currency=${currency.ordinal()}
@Timed(value="time_something", extraTags = {"type", "with_enum"})
public Something calculateSomething(@MeterTag(expression="currency.ordinal()") Currency currency) { ... }
Provided tag values MUST BE of LOW-CARDINALITY. High-cardinality values can lead to performance and storage issues in your metrics backend (a "cardinality explosion"). Tag values should not use end-user data, since those could be high-cardinality. |
Many methods, like REST endpoint methods or Vert.x Routes, are counted and timed by the micrometer extension out of the box.
MicroProfile Metrics API のサポート
If you use the MicroProfile Metrics API in your application, the Micrometer extension will create an adaptive layer to map those metrics into the Micrometer registry. Note that naming conventions between the two systems is different, so the metrics that are emitted when using MP Metrics with Micrometer will change.
Use a MeterFilter
to remap names or tags according to your conventions.
@Produces
@Singleton
public MeterFilter renameApplicationMeters() {
final String targetMetric = MPResourceClass.class.getName() + ".mpAnnotatedMethodName";
return MeterFilter() {
@Override
public Meter.Id map(Meter.Id id) {
if (id.getName().equals(targetMetric)) {
// Drop the scope tag (MP Registry type: application, vendor, base)
List<Tag> tags = id.getTags().stream().filter(x -> !"scope".equals(x.getKey()))
.collect(Collectors.toList());
// rename the metric
return id.withName("my.metric.name").replaceTags(tags);
}
return id;
}
};
}
Ensure the following dependency is present if you require the MicroProfile Metrics API:
<dependency>
<groupId>org.eclipse.microprofile.metrics</groupId>
<artifactId>microprofile-metrics-api</artifactId>
</dependency>
implementation("org.eclipse.microprofile.metrics:microprofile-metrics-api")
The MP Metrics API compatibility layer may be moved to a different extension in the future. |
マネジメントインターフェース
By default, the metrics are exposed on the main HTTP server.
You can expose them on a separate network interface and port by setting quarkus.management.enabled=true
in your application configuration.
Note that this property is a build-time property.
The value cannot be overridden at runtime.
If you enable the management interface without customizing the management network interface and port, the metrics are exposed under: http://0.0.0.0:9000/q/metrics
.
You can configure the path of each exposed format using:
quarkus.micrometer.export.json.enabled=true # Enable json metrics
quarkus.micrometer.export.json.path=metrics/json
quarkus.micrometer.export.prometheus.path=metrics/prometheus
このような設定にすることで、json メトリクスが http://0.0.0.0:9000/q/metrics/json
で利用可能になります。prometheus メトリクスは、 http://0.0.0.0:9000/q/metrics/prometheus
で利用可能になります。
詳しくは、 マネジメントインターフェイスのリファレンス を参照してください。
Micrometerで計測されたQuarkusのコアエクステンション
-
jboss-logging
(Quarkusのlogging API) -
-
AMQP 1.0
-
RabbitMQ
-
Kafka
-
Pulsar
-
JMS
-
MQTT
-
Camel Messaging
-
-
quarkus-vertx
(http リクエスト)
設定リファレンス
ビルド時に固定される構成プロパティ - 他のすべての構成プロパティは実行時にオーバーライド可能
Configuration property |
型 |
デフォルト |
---|---|---|
boolean |
|
|
boolean |
|
|
boolean |
|
|
Outbound HTTP request metrics support. Support for HTTP client metrics will be enabled if Micrometer support is enabled, the REST client feature is enabled, and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Inbound HTTP metrics support. Support for HTTP server metrics will be enabled if Micrometer support is enabled, an extension serving HTTP traffic is enabled, and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Micrometer JVM metrics support. Support for JVM metrics will be enabled if Micrometer support is enabled, and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Kafka metrics support. Support for Kafka metrics will be enabled if Micrometer support is enabled, the Kafka Consumer or Producer interface is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Redis client metrics support. Support for Redis metrics will be enabled if Micrometer support is enabled, the Quarkus Redis client extension is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Stork metrics support. Support for Stork metrics will be enabled if Micrometer support is enabled, the Quarkus Stork extension is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
gRPC Server metrics support. Support for gRPC server metrics will be enabled if Micrometer support is enabled, the gRPC server interfaces are on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
gRPC Client metrics support. Support for gRPC client metrics will be enabled if Micrometer support is enabled, the gRPC client interfaces are on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Kafka metrics support. Support for Reactive Messaging metrics will be enabled if Micrometer support is enabled, MessageObservationCollector interface is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Eclipse MicroProfile Metrics support. Support for MicroProfile Metrics will be enabled if Micrometer support is enabled and the MicroProfile Metrics dependency is present:
The Micrometer extension currently provides a compatibility layer that supports the MP Metrics API, but metric names and recorded values will be different. Note that the MP Metrics compatibility layer will move to a different extension in the future. Environment variable: Show more |
boolean |
|
Micrometer System metrics support. Support for System metrics will be enabled if Micrometer support is enabled, and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Vert.x metrics support. Support for Vert.x metrics will be enabled if Micrometer support is enabled, Vert.x MetricsOptions is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
Netty metrics support. Support for Netty metrics will be enabled if Micrometer support is enabled, the Netty allocator classes are on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
boolean |
|
|
The path for the JSON metrics endpoint. The default value is Environment variable: Show more |
string |
|
Statistics like max, percentiles, and histogram counts decay over time to give greater weight to recent samples. Samples are accumulated to such statistics in ring buffers which rotate after the expiry, with this buffer length. Environment variable: Show more |
int |
|
Statistics like max, percentiles, and histogram counts decay over time to give greater weight to recent samples. Samples are accumulated to such statistics in ring buffers which rotate after this expiry, with a particular buffer length. Environment variable: Show more |
|
|
Support for export to Prometheus. Support for Prometheus will be enabled if Micrometer support is enabled, the PrometheusMeterRegistry is on the classpath and either this value is true, or this value is unset and Environment variable: Show more |
boolean |
|
The path for the prometheus metrics endpoint (produces text/plain). The default value is
If the management interface is enabled, the value will be resolved as a path relative to
Environment variable: Show more |
string |
|
boolean |
|
|
Comma-separated list of regular expressions used to specify uri labels in http metrics. Vertx instrumentation will attempt to transform parameterized
resource paths, Patterns specified here will take precedence over those computed values. For example, if Environment variable: Show more |
list of string |
|
list of string |
||
Suppress non-application uris from metrics collection.
This will suppress all metrics for non-application endpoints using
Suppressing non-application uris is enabled by default. Environment variable: Show more |
boolean |
|
int |
|
|
Prometheus registry configuration properties. A property source for configuration of the Prometheus MeterRegistry, see https://micrometer.io/docs/registry/prometheus. Environment variable: Show more |
Map<String,String> |
|
Comma-separated list of regular expressions used to specify uri labels in http metrics. Outbount HTTP client instrumentation will attempt to transform parameterized
resource paths, Patterns specified here will take precedence over those computed values. For example, if Environment variable: Show more |
list of string |
|
list of string |
||
int |
|
期間フォーマットについて
To write duration values, use the standard 数字で始まる簡略化した書式を使うこともできます:
その他の場合は、簡略化されたフォーマットが解析のために
|